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Abstract. Many industries are required to monitor themselves in meeting regulatory poli-
cies intended to protect the environment. Self-reporting of environmental performance can
place the cost of monitoring on companies rather than taxpayers, but there are obvious risks
of bias, often addressed through external audits or inspections. Surprisingly, there have been
relatively few empirical analyses of bias in industry self-reported data. Here, we test for bias in
reporting of environmental compliance data using a unique data set from Canadian salmon
farms, where companies monitor the number of parasitic sea lice on fish in open sea pens, in
order to minimize impacts on wild fish in surrounding waters. We fit a hierarchical population-
dynamics model to these sea-louse count data using a Bayesian approach. We found that the
industry’s monthly counts of two sea-louse species, Caligus clemensi and Lepeophtheirus salmo-
nis, increased by a factor of 1.95 (95% credible interval: 1.57, 2.42) and 1.18 (1.06, 1.31),
respectively, in months when counts were audited by the federal fisheries department. Conse-
quently, industry sea-louse counts are less likely to trigger costly but mandated delousing treat-
ments intended to avoid sea-louse epidemics in wild juvenile salmon. These results highlight
the potential for combining external audits of industry self-reported data with analyses of their
reporting to maintain compliance with regulations, achieve intended conservation goals, and
build public confidence in the process.

Key words: Caligus clemensi; environmental compliance; environmental management; environmental
policy; industry data; Lepeophtheirus salmonis; Pacific salmon; policy implementation; salmon farms; sal-
mon lice; sea lice; self-reported data.

INTRODUCTION

Environmental policies are intended to reduce human
impacts on the natural world. The scope and “teeth” of
an environmental policy can determine whether it meets
its objectives, but implementation, or lack thereof, can
have equally strong impacts to on-the-ground success
(Howe 1993, Schwartz 2008, Wang et al. 2008). Analysis
and evaluation of environmental policy implementation
is critical for maximizing its efficacy (Potoski and Pra-
kash 2013, Van Den Hoek et al. 2014).
For numerous environmental issues, policy implemen-

tation relies on self-reported data from industry to detect
and mitigate problems (Livernois and McKenna 1999,
Shimshack and Ward 2005, Barla 2007). For example,
national policies commonly rely on industry to self-mon-
itor pollution discharge or to self-report violations of
pollution standards (Gamper-Rabindran and Finger
2013, Russell et al. 2013). Industry self-reporting enables

monitoring programs that are otherwise infeasible due
to costs or logistics (Gunningham and Rees 1997), can
shift monitoring costs from taxpayers to companies
(Stoeckl 2004), and provides opportunities for compa-
nies to demonstrate cooperation with regulatory author-
ities (Helland 1998). On the other hand, biased self-
reporting can have significant environmental conse-
quences if inaccurate data generate management (in)ac-
tions and ecological responses that are misaligned with
policy intentions. Audits, inspections, and threats of
legal action or financial penalty help maintain the accu-
racy of industry self-reported data (Gray and Shimshack
2011), but accuracy can be costly for industry if the data
indicate violations to regulations (Gunningham and
Rees 1997, Heyes 2000). Although these incentives for
inaccurate self-reporting can be high, the accuracy of
self-reported data from industry is rarely investigated
(but see references Li et al. [2017] and De Marchi and
Hamilton [2006], for example).
Recent decades have seen a surge in the number of

policies designed to reduce the environmental impacts of
aquaculture, a set of industries whose rapid expansion,
termed the blue revolution, has resulted in an
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unprecedented rate of change in the relative contribution
of farming to overall production (Duarte et al. 2007).
Although this shift might reduce fishing pressure in
some systems, it can also bring additional stressors in
the form of emerging infectious diseases (Daszak et al.
2000), as did terrestrial agriculture before it (Harwood
1990). Aquaculture facilities can act as disease reservoirs
that provide persistent sources of infection, even at low
densities of wild hosts, and may lead to elevated extinc-
tion risk for wildlife (De Castro and Bolker 2005, Krko-
sek et al. 2013a). Effective policies are imperative to
manage disease and allow aquaculture and marine wild-
life to coexist, while sustaining a productive seafood sup-
ply.
Of the many forms of aquaculture, salmon farming

has raised the greatest concern in terms of its impacts on
wildlife. Salmon farms typically raise hundreds of thou-
sands of Atlantic salmon (Salmo salar) in open-net pens
(Orr 2007) and operate in the same nearshore marine
waters through which wild salmon (Oncorhynchus spp.
or Salmo spp.) migrate (Ford and Myers 2008). Conse-
quently, pathogens and parasites are easily transmitted
between farmed and wild salmon (Krkosek 2017). The
most studied example of this phenomenon is the spread
of native parasitic sea lice (primarily Lepeophtheirus sal-
monis and Caligus spp.) from wild adult salmon to
farmed salmon, leading to amplification of infections on
farms and transmission to wild juvenile salmon as they
migrate past the net pens (Krkosek et al. 2007, Marty
et al. 2010, Groner et al. 2016). In the absence of salmon
farms, juvenile salmon typically have low infestation
rates of sea lice (Costello 2009), but when they become
infested they can suffer high levels of direct (Morton
and Routledge 2005, Jones et al. 2008) or indirect mor-
tality (Peacock et al. 2015, Godwin et al. 2017, Godwin
et al. 2018), which is associated with reduced recruitment
of wild adult salmon in Europe (Krkosek et al. 2013b,
Vollset et al. 2016) and North America (Krkosek et al.
2011).
British Columbia (BC), Canada is the only region in

the world that is a large global producer of both farmed
and wild salmon (Groner et al. 2016). In this important
social-ecological system, high sea-louse infestation rates
on wild juvenile salmon in the early 2000s led to new
regulations designed to control sea-louse numbers on
farms (Peacock et al. 2013). British Columbia salmon
farms are now required to self-monitor sea-louse infesta-
tion rates on their fish by performing sea-louse counts
every month, which distinguish between the two main
species of sea louse in BC: L. salmonis and Caligus clem-
ensi. Lepeophtheirus salmonis, a salmonid specialist, is
the focus of sea-louse regulations in BC (and most of the
world) because until recently (Godwin et al. 2015, God-
win et al. 2017, Godwin et al. 2018) there was no evi-
dence of harmful host effects from C. clemensi, a
generalist that infects other nearshore marine fishes.
Prior to 2017, treatments to reduce sea-louse abun-
dances on BC salmon farms were almost exclusively

conducted using an in-feed parasiticide called emamec-
tin benzoate (trade name SLICE; Saksida et al. 2010).
Current policy requires salmon farms to either harvest
or conduct a delousing treatment when louse abundance
exceeds three motile (i.e., adult or pre-adult) L. salmonis
per fish. This policy drastically reduced sea-louse epi-
zootics on BC salmon farms and seemed to halt the
decline of local pink salmon populations in one region
of the BC coast (Peacock et al. 2013). The implementa-
tion of this policy requires salmon farms to collect and
report sea-louse count data themselves, in order to know
when the three-louse threshold has been exceeded. The
Canadian federal Department of Fisheries and Oceans
(DFO) occasionally conducts scheduled audits of these
industry counts (see the Appendix S1 for more local con-
text).
Here, we assess whether industry self-reporting leads

to underestimation bias in sea-louse monitoring data
from BC salmon farms. We address this question by ana-
lyzing time series of self-reported, periodically audited
parasite data from 91 farms (Fig. 1) over 6 yr, using a
hierarchical model and Bayesian fitting methods. We use
population-dynamic models to test for potential differ-
ences between audited and unaudited counts.

FIG. 1. Locations of the 91 British Columbia, Canada sal-
mon farms in the industry sea-louse data set that were active
(i.e., stocked with fish) for at least one month between 2011 and
2016. Solid black lines demarcate the boundaries of Depart-
ment of Fisheries and Oceans (DFO) fish health surveillance
zones, each of which is identified by number.
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METHODS

Data

We used publicly available sea-louse data collected by
aquaculture industry staff on active farms in BC from
2011 through 2016 (Fisheries and Oceans Canada
2017d); once reported by industry, the data are managed
and publicly hosted by DFO. These data are monthly
averages of industry louse counts on individual salmon
farms; data from individual sampling events or individ-
ual fish are not publicly available. During each sea-louse
sampling event, farm staff capture stocked fish by seine
net in three net pens and collect at least 20 fish by dip
net from each seine (Fisheries and Oceans Canada
2016). One of the net pens is a reference pen that is
assessed in every sampling event, and the other two are
selected randomly (Fisheries and Oceans Canada 2016).
The collected fish are then placed in an anesthetic bath
of tricaine methanesulfonate (TMS, or MS-222) and
assessed for lice by eye. The sea-louse counts concentrate
on the more pathogenic and mobile pre-adult and adult
life stages (termed “motile”) rather than the attached
stages earlier in development. For each farm in the data
set, between zero and six sea-louse sampling events were
conducted each month (mean = 1.64 events per month),
and 99.1% of these months had one to three sampling
events.
For every mean monthly motile louse count, the

industry data set includes the month and year of the
count, the number of sampling events contributing to
the count, the age class of the stocked fish, a farm facil-
ity identifier, the farm’s fish health surveillance zone
(Fig. 1), and the previous month’s mean louse count.
The data set also has comments denoting planned or
recently performed treatments, and from these we
inferred the months in which treatments probably
occurred. We excluded mean monthly counts that were
missing any of this information (n = 440). Our final data
set comprised 2,626 mean monthly louse counts over 6
yr, from seven health zones and 91 farms (Fig. 1). When
visualizing the average monthly counts in a calendar
year, we bootstrapped 95% confidence intervals by sam-
pling the monthly counts in each year with replacement
using the same sample size, combining the samples from
the entire 6 yr span, calculating the mean of the com-
bined sample, repeating this process 10,000 times, and
calculating the 2.5th and 97.5th percentile of the 10,000
means for the confidence bounds.
In an attempt to ensure the quality of industry sea-

louse data, DFO performs intermittent, prearranged
audits of industry sea-louse monitoring. The farm facili-
ties to be audited are chosen randomly each month, and
the audits are then performed at the same time as an
industry sampling event (Fisheries and Oceans Canada
2017c). During the audits, fish are selected in the same
manner as for non-audited sampling events and divided
equally between farm staff and DFO personnel for

independent counting (Fisheries and Oceans Canada
2017c). Audit timing data are publicly available (Fish-
eries and Oceans Canada 2017b), and we therefore knew
whether or not an audit was associated with each of the
mean monthly louse counts. Audits occurred in 7.7% of
the month–farm combinations in the data set.

Model

To assess the potential effect of DFO audits on indus-
try-reported sea-louse counts, we fit a hierarchical model
to the mean monthly counts from the self-reported and
publicly available industry data set (Fisheries and
Oceans Canada 2017d). While our primary goal was to
clarify whether sea-louse counts decrease in months
when DFO audits are not conducted, our model also
accounted for the effects of month, year, and fish health
surveillance zone, which incorporate variation in envi-
ronmental conditions, as well as farmed salmon age class
and louse density dependence. We fit the model using
Markov chain Monte Carlo (MCMC) methods and uni-
form priors. Our model was composed of two identical
parts, one for L. salmonis dynamics and one for C. clem-
ensi dynamics, but was fit to both species’ count data
simultaneously to allow for the inclusion of an inter-
specific density dependence term in each part. For sim-
plicity, we present only the L. salmonis-focused
components of our model.
The model had distinct population growth and colo-

nization components. The colonization component
included covariates for year, health zone, and farmed
salmon age class. The population growth component
included covariates for month, year, health zone, farmed
salmon age class, and inter- and intraspecific density
dependence. Each component included a varying-inter-
cept term (i.e., a random-effect level) for each farm. The
effects of delousing treatment and DFO audit acted
upon the entire model such that any effect would pro-
duce a proportional change in louse counts. We fit our
single model and interpreted its results rather than per-
forming model selection on smaller models because (1)
parsimony was not our objective, (2) the complexity of
the model was justified by the size of the data set, and
(3) all the parameters had strong biological justifications
(see Gelman and Rubin [1995] and Neal [2012] for dis-
cussion of this method of Bayesian model inference).
Table 1 provides an overview of the model notation, and
Appendix S1 presents model diagnostics, posterior plots,
and the full set of parameter estimates.
In the industry data set, the mean monthly counts are

rounded to the nearest 10 and include a high proportion
of zeroes. Similar to Jansen et al. (2012), we model
monthly louse counts per 10 fish (i.e., we multiplied the
mean monthly counts by 10) and assume a negative
binomial error distribution:

NL;t;f � negative binomial lL;t;f ; qL
� �

(1)
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where NL,t,f is the reported mean motile louse count per
10 fish in month t on farm f, µL,t,f is the predicted mean
motile louse count per 10 fish for that month and farm,
and qL is the negative binomial shape parameter, fit as
an additional free parameter. We allowed the shape
parameter of the negative binomial to vary between spe-
cies because one key relationship that drives overdisper-
sion is the ratio of immigrants to births (Bolker 2008);
the relative contributions of colonization and on-farm
population growth to counts are likely to be very differ-
ent between C. clemensi and L. salmonis due to the large
difference in their mobility among hosts (Saksida et al.
2015, Atkinson et al. 2018). Using the negative binomial
prevents complications associated with zero counts
because, unlike the gamma distribution, the negative
binomial distribution allows for zeros. A gamma hurdle
model, for example, may better accommodate zero
counts, but such a model that included adequate com-
plexity (i.e., terms for density dependence, delousing
treatments, temporal and spatial effects, and the neces-
sary random effects) proved inordinately complex and
challenging to fit. In this case, the negative binomial is a
natural choice for a single distribution that accommo-
dates zeros as well as extra-Poisson variability

introduced by model uncertainty. Also, parasites, includ-
ing sea lice (Heuch et al. 2011), are typically overdis-
persed on hosts (i.e., the variance is greater than the
mean) and are commonly considered to be negative
binomially distributed (Crofton 1971, Anderson and
May 1992, Shaw et al. 1998). We note that the standard
error (and therefore the distribution) of the mean
monthly louse counts will, in fact, be affected by the
number of fish assessed on a farm in any given month,
but this information is not available. We use the negative
binomial distribution as a good empirical approximation
of the true underlying distribution (see Appendix S1:
Fig. S1 for diagnostics).
At their most basic, our models take the form

lL;tþ1;f ¼ NL;t;f kL;t;f þ cL;t;f (2)

where the mean motile count in month t (µL,t+1,f) is pre-
dicted by the sum of intrinsic on-farm dynamics and
external colonization pressure. The on-farm dynamics
are the product of the previous month’s count on that
farm (NL,t,f) and a per capita population growth rate
(kL,t,f) affected by on-farm conditions, such as louse den-
sity and treatment status. The colonization rate (cL,t,f) is

TABLE 1. Overview of model notation.

Symbol Description Data or prior details

Response variable
N motile louse count per ten fish integer

Indices for predictor variables
t index for time step (month) 72 months (January 2011–December 2016)
f index for farm 91 farms (all active BC farms in 2011–2016)
treat index for treatment status three treatment statuses (treated in t, in t � 1, or not treated)
zone index for fish health surveillance zone seven health zones (all health zones for the 91 farms)
year index for year six years (2011–2016)
month index for month of the year 12 months of the year (January–December)
class index for age class of farmed fish two age classes (<1 yr in sea, ≥1 yr in sea)

Model predictions and parameters
µ predicted motile louse count per 10 fish
k per-capita louse population growth rate
c louse colonization rate
s effect of delousing treatment fixed, U(�100,100)
a effect of DFO audit fixed, U(�100,100)
q negative binomial shape parameter U(�100,100)

Submodel predictions and parameters
g linear function for k (k = eg)
gi coefficient in g, associated with predictor i fixed, all U(�100,100)†
φ varying-coefficients term for farms in g random, U(�100,100)
b linear function for c (c = eb)
bi coefficient in b, associated with predictor i fixed, all U(�100,100)
w varying-coefficients term for farms in b random, U(�100,100)

Subscripts
L subscript for Lepeophtheirus salmonis
C subscript for Caligus clemensi
o subscript for reported louse count

Note: DFO, Department of Fisheries and Oceans; BC, British Columbia, Canada.
†With the exception of gC,zone3�1, which was constrained to be U(�10,10) due to low sample size, as discussed in Methods.

Article e02226; page 4 SEAN C. GODWIN ETAL.
Ecological Applications

Vol. 31, No. 1



a function of extrinsic factors. Both the per capita popu-
lation growth rate and the colonization rate are modeled
as transformed linear functions, where kL;t;f ¼ egL;t;f and
cL;t;f ¼ ebL;t;f ; thus gL,t,f and bL,t,f are analogous to linear
predictors in generalized linear mixed models (GLMMs)
with a logarithmic link function. Note that our model
assumes key population processes can be captured by
considering only motile lice, ignoring details of early
developmental stages. But while our model does not
explicitly consider larval lice, those that colonize as lar-
vae and develop into motiles are still captured in the col-
onization-rate component of our model. We also
implicitly model the influence of environmental condi-
tions on development time between larval attachment
and the motile stage (~27 d for L. salmonis at 10°C
[Johnson and Albright 1991] and unknown length for C.
clemensi) in the growth-rate component. We do this by
including spatial and temporal predictors (i.e., health
zone, month, and year) that are strongly correlated with
temperature and salinity (Pickard and McLeod 1953,
Fisheries and Oceans Canada 2017a) – important dri-
vers of development timing for sea lice (Johnson and
Albright 1991). While it would be more direct to use
actual temperature and salinity measurements from the
farms, we were unable to obtain these data.
We allow delousing treatment to influence monthly

louse counts, including the motiles that developed over
the month, as

lL;tþ1;f ¼ esL;treat;t;f NL;t;f kL;t;f þ cL;t;f
� �

(3)

where esL;treat;t;f is a proportional mortality term for farm f
in month t that results from delousing treatment. The
exponent takes one of three levels: zero if treatment last
occurred more than one month before t, or one of two
levels to describe louse decline when treatment occurred
in month t or t � 1, corresponding to the two-month
effectiveness previously described for emamectin ben-
zoate (Lees et al. 2008, Saksida et al. 2010).
To account for the potential effects of DFO audits on

industry louse counts, we extend the model such that

lL;tþ1;f ¼ esL;treatt;f eaL;tþ1;f
NL;t;f ;n

eaL;t;f
kL;t;f þ cL;t;f

� �
(4)

where eaL;tþ1;f allows for a proportional change in a
farm’s counts in month t (or t + 1, as appropriate), if
indeed they are influenced by whether the DFO audits a
farm. The exponent, aL,t,f, takes the value of 0, if no
audit occurs, or a fitted estimate, if an audit occurs.
When an audit does occur in month t, that month’s
reported louse count (NL,t,f,o) is rescaled by eaL;t;f to
account for any louse count observation error associated
with audits.
The linear predictor for per capita population growth

rate in a given month and farm (ln(kL,t,f) from Eq. 2)
takes the form

gL;t;f ¼gL;0 þ gLL;classNL;t;f þ gLC;classNC;t;f

þ gclass;t;f þ gL;zone;f þ gL;year;t þ gL;month;t þ uL;f :

(5)

The first term is an intercept (gL,0) that defines growth
rate at base factor levels (class = <1 year in sea,
zone = 2–3, year = 2011, month = January) and louse
counts of zero for L. salmonis and C. clemensi abun-
dance in the previous month. The next two terms repre-
sent the interspecific and intraspecific density
dependence on a farm’s per capita louse count in month
t; they each incorporate a farm’s louse counts in month
t � 1 (NL,t�1,f and NC,t�1,f) and a coefficient that
describes density dependence due to either L. salmonis
(gLL,class) or C. clemensi (gLC,class). These coefficients
depend on the age class of the farm’s stocked fish in
month t (farm and month subscripts not shown), which
can take one of two levels: fish that have spent less than
one year in seawater, and fish that have spent greater
than or equal to one year in seawater. Age class also
directly affects the per capita growth rate of a farm in
month t (gclass,t,f) because fish surface area may influ-
ence louse survival (Tucker et al. 2002). There are three
additional coefficients for categorical covariates: the age
class of the fish for a given month and farm (gclass,t,f),
the health zone of the farm (gL,zone,f), and the year (gL,

year,t) and month (gL,month,t) of the louse count. Among
other things, these coefficients represent spatial and tem-
poral variability in temperature and salinity. The last
term in Eq. 5 is a varying coefficient (hereafter termed a
“random effect” to continue the parallel between our
submodels and GLMMs) describing how the intercept
varies among farms.
We modeled the linear predictor for a farm’s coloniza-

tion rate in month t such that

bL;t;f ¼ bL;0 þ bclass;t;f þ bL;zone;f þ bL;year;t þ wL;f (6)

where bL,0 is an intercept term describing the coloniza-
tion rate when counts were zero for L. salmonis and C.
clemensi in the previous month, and at base factor levels
(class = <1 yr in sea, zone = 2–3 and year = 2011). The
age class of the farm’s fish (bclass,t,f), the farm’s fish
health surveillance zone (bL,zone,f), and the year of the
count (bL,year) affect colonization rate in the same man-
ner that they affected per capita growth rate in Eq. 5.
Finally, we include a random effect on the intercept of
farm facility to account for the hierarchical nature of the
data (wL,f) while limiting the number of farm facility
parameters in our model. We attempted to include colo-
nization density dependence as we did for the population
growth rate linear function (Eq. 5), but that model did
not converge.
The full equation for the predicted mean motile louse

count is as follows:where the overbraces reference the
previously described equations and where the predicted
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mean motile louse count is the mean of the negative
binomial probability density function in Eq. 1.
We used uniform priors between �100 and 100 for all

of our parameters except for a single gzone,C coefficient.
We constrained this parameter’s uniform prior between
�10 and 10 because the C. clemensi data for this particu-
lar fish health surveillance zone (zone 3–1) included two
drastic month-to-month declines in mean louse counts
that caused fitting complications. This constraint had lit-
tle effect on the median parameter estimate for
gC,zone3�1, which was highly uncertain regardless due to
low sample size in that zone (Appendix S1: Fig. S2). The
uniform prior has the desirable property that the overall
probability of either inflation or deflation is equal – a
necessary condition to avoid biasing the audit parame-
ters, or indeed any of the parameters. While this prior is
not flat on the response scale (i.e., when exponentiated it
is not distributed uniformly), the audit result was
unchanged when we used a prior that was “flatter” on
the response scale over the range of interest (but there-
fore assigned more prior weight to inflationary audit
effects; see Appendix S1). We fit separate variance
parameters for the two farm-facility random effects (φL,f
and wL,f), in addition to a parameter describing the cor-
relation between the two; we used the same uniform pri-
ors for these random-effects parameters. The random
effects were each drawn from a multivariate normal dis-
tribution with a mean of zero and a covariance matrix
determined by an inverse-Wishart distribution, which
was in turn informed by the three random-effect param-
eters (Gelman and Hill 2007). The random effects were

needed to account for the hierarchical nature of the data
while also avoiding fitting 180 separate fixed-effect
parameters.
When parameter estimates are given in the text, we

report them as posterior medians along with the lower
and upper 95% credible intervals. Our analysis was per-
formed using R 3.2.1 (R Core Team 2019) and JAGS
4.3.0 (Plummer 2017) with the R package R2jags 0.5-7
(Yu-Sung Su and Yajima 2015).

RESULTS

We found that industry sea-louse counts are biased
downward. In months when DFO performed its prear-
ranged audits, the industry’s mean monthly C. clemensi
counts were 1.95 (95% credible interval: 1.57, 2.42) times
counts in months when DFO did not audit (Fig. 2), after
accounting for all the other variables in our model.
For L. salmonis, counts in audit months were 1.18

(1.06, 1.31) times counts in non-audit months (Fig. 2).
When this correction factor was applied to the reported
counts in months that DFO did not audit, the number
of mean monthly counts that exceeded the three-louse
threshold rose from 376 to 437, an increase of 16%. On
average, farms waited 1.2 � 0.1 months (mean � SE)
before treating or harvesting following a month when
the mean L. salmonis count exceeded the treatment
threshold. When using counts corrected for the audit
effect, this delay lengthened to 1.6 � 0.2 months, a 30%
increase. During the wild juvenile salmon migration
(March–June), the mean delay before action was
0.7 � 0.2 months, according to the reported counts, but
the corrected counts reveal a 22% increase in delay time,
to 0.9 � 0.2 months.
Our model predicted that unaudited counts were

reduced by a factor of 0.51 (0.41, 0.63) and 0.85 (0.76,
0.94) relative to the audited C. clemensi and L. salmo-
nis counts, respectively (Fig. 4). In comparison, treat-
ments in the previous month reduced counts by a
factor of 0.31 (0.23, 0.1) for C. clemensi and by 0.38
(0.28, 0.50) for L. salmonis. In the absence of audits
and treatments, the predicted contributions of popula-
tion growth rate and colonization rate to louse counts
were drastically different between the two species. For
C. clemensi, estimated on-farm population growth con-
tributed 25% (20%, 29%) to counts, on average, and
estimated colonization contributed 65% (61%, 68%).
For L. salmonis, these contributions were almost per-
fectly reversed, with population growth contributing
65% (61%, 68%) to counts and colonization contribut-
ing 28% (25%, 32%).

FIG. 2. Proportional increase in farm louse counts (Caligus
clemensi and Lepeophtheirus salmonis) in months when DFO
audited farms, as shown by the exponentiated posterior distri-
butions for the audit parameters in our model. The colored hor-
izontal lines give the 95% credible intervals and the dotted
black vertical lines describe the exponentiated median parame-
ter estimates. The dashed gray vertical line at 1.0 indicates no
difference in counts between months with and without a DFO
audit.
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DISCUSSION

Our results suggest that sea-louse counts reported by
the salmon farming industry are lower than the true
abundance of parasites on their fish. When the federal
government audited a sea-louse count, the industry’s
mean counts for that month increased by a factor of
1.18 for L. salmonis and by 1.95 for C. clemensi. This

underestimation bias has likely led to fewer treatments
and longer delays before management action is taken
during sea-louse outbreaks, thus reducing the effective-
ness of environmental policy designed to safeguard wild
salmon populations.
When we corrected the reported sea-louse counts for

the audit effect, we found considerable differences
between reported and corrected counts. For C. clemensi,
corrected counts were 1.96 times reported counts and
nearly reached the same levels as L. salmonis during
migration months for wild juvenile salmon (Fig. 3).
These high C. clemensi levels on farms have the potential
to affect wild populations given recent correlative work
linking C. clemensi abundance with decreased foraging
success, competitive ability, and growth in wild juvenile
salmon (Godwin et al. 2015, Godwin et al. 2017, God-
win et al. 2018). Despite the growing evidence for effects
of C. clemensi on wild salmon and the unexpectedly high
abundances of this species on farms during the wild
juvenile migration, C. clemensi are not currently targeted
by management on salmon farms. For L. salmonis, the
louse species targeted by management, corrected average
counts were higher than the three-louse treatment
threshold for one-quarter of the year (September, Octo-
ber, and November; Fig. 3). By contrast, there were no
months in which the average reported counts exceeded
the treatment threshold.
The management implication of biased sea-louse

counts is that delousing treatments to control outbreaks
may be delayed or may not occur at all. After correcting
the reported L. salmonis counts for the audit effect, we
found a 16% increase in the number of mean monthly
counts that broke this three-louse threshold. This
increase does not imply that there should have been 16%
more treatments – to make this calculation we would

FIG. 3. Monthly variation in reported and corrected mean motile Caligus clemensi and Lepeophtheirus salmonis) counts on Bri-
tish Columbia salmon farms between 2011 and 2016. Shaded regions depict 95% confidence intervals for the monthly means and
do not reflect uncertainty in the audit effect (Fig. 2); these confidence intervals were calculated by bootstrapping the counts 10,000
times while maintaining the hierarchical structure with respect to year (see methods). Reported counts were corrected by the median
estimate of the audit effect (Fig. 2) for both species. Dashed vertical lines delineate the wild juvenile salmon migration period
(April–June) and the horizontal line in the right panel represents the current threshold for delousing treatment. We show the
monthly means connected by lines for visual effectiveness, but we note that these are discrete monthly data.

FIG. 4. Relative effects of the four main components of the
model (audit, treatment, population growth, and colonization
from Eq. [7]) for both L. salmonis (blue) and C. clemensi (red).
The audit and treatment terms are represented as reduction fac-
tors that proportionally change louse counts. The reduction fac-
tor for the treatment term is its exponentiated posterior and the
reduction factor for the audit term is the reciprocal of its expo-
nentiated posterior. The population growth and colonization
components are presented as their predicted percent contribu-
tions to unaudited and untreated counts. The dashed vertical
lines denote the median values.

January 2021 BIAS IN PARASITE DATA FROM SALMON FARMS Article e02226; page 7



need to know how many individual counts broke the
threshold, and industry counts are only reported as
monthly means – but it does suggest that underesti-
mated counts may well influence treatment decisions.
Indeed, we found the average delay between a month
with a threshold-breaking count and the subsequent
management action increased by 30% when using cor-
rected counts instead of reported counts, and by 22%
during months in which wild juvenile salmon migrate.
The corrected delay during the migration window, while
shorter than the corrected average year-round delay
(0.9 � 0.2 months during migration and
1.6 � 0.2 months year-round), is still longer than the 15
calendar days license conditions allow farms before they
must “implement a plan which will reduce absolute sea
lice inventory” during migration months (Fisheries and
Oceans Canada 2016).
One solution to remove bias from self-reported data

would be for monitoring to be conducted by an indepen-
dent third party. However, regulatory transitions from
self-monitoring to third-party monitoring are rare and,
to our knowledge, their effect on data accuracy remains
unassessed. Other options for increasing data accuracy
include improving data collection training for industry
staff (Dasgupta et al. 2000) and performing audits or
inspections without advance notice after data collection
takes place, so that data are always collected with the
risk of subsequent review (Laplante and Rilstone 1996).
The latter solution eliminates the potential for finding
statistical agreement between industry and auditor
counts during the audits themselves (as is the case for
sea-louse monitoring (Elmoslemany et al. 2013, Fish-
eries and Oceans Canada 2018)), only to observe a drop
in accuracy when auditors are absent (as our results
show). In the case of sea lice, the counting protocol itself
could be improved, for example by discontinuing the use
of dip nets to avoid dislodging lice (Godwin et al. 2015).
The current protocol requires high diligence to minimize
or retrieve dislodged sea lice; this is especially true for
the highly mobile C. clemensi (Saksida et al. 2015,
Atkinson et al. 2018), which could explain why our
results indicated that C. clemensi are more underesti-
mated than L. salmonis.
A final option to improve the accuracy of sea-louse

counts would be to systematically apply correction fac-
tors (here estimated to be 1.18 for L. salmonis and 1.96
for C. clemensi) to the reported monthly means. These
correction factors could be dynamic over time and
informed by empirical quantitative analyses like the one
we present here; the prospect of reduced correction fac-
tors could provide incentive for industry to improve data
accuracy. It should be noted that the actual bias in indi-
vidual counts (i.e., audited vs. non-audited counts) is
probably greater still than the bias reported here,
because the count data in the public data set are given as
monthly means. Bias in audited counts was thus diluted
in the pool of each month’s counts (mean = 1.64 counts
per month).

CONCLUSIONS

Industry self-reported data are often thought to be
unbiased because incentives exist for accurate self-re-
porting. For example (1) self-reporting is done under
surveillance (Short and Toffel 2010), (2) audits or inspec-
tions are performed without advance notice (Russell
1992, Makofske 2019), (3) misreporting is met with
administrative, legal, or financial penalties (Shimshack
and Ward 2005, Gray and Shimshack 2011), (4) accurate
data are easy to obtain (Gunningham and Rees 1997,
Gray and Shimshack 2011), or (5) industry is not penal-
ized when self-reporting demonstrates violations to regu-
lations (Livernois and McKenna 1999). None of these
conditions exist for sea-louse counts on salmon farms;
in particular, self-reported violations (i.e., L. salmonis
counts above three motile lice per fish) result in the farm
having to perform a costly delousing treatment or har-
vest its fish earlier than it would otherwise. Our results
suggest that when incentives for accurate self-reporting
are not strong, bias can occur in industry self-reported
data. By providing explicit and strong incentives for
accurate self-reporting, environmental policies can reap
the benefits of industry data while also increasing com-
pliance and effectiveness.
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